The relationship among tumor architecture, pharmacokinetics, pharmacodynamics, and efficacy of bortezomib in mouse xenograft models.

نویسندگان

  • Mark J Williamson
  • Matthew D Silva
  • Jennifer Terkelsen
  • Robbie Robertson
  • Li Yu
  • Cindy Xia
  • Panos Hatsis
  • Bret Bannerman
  • Trisha Babcock
  • Yueying Cao
  • Erik Kupperman
چکیده

Understanding a compound's preclinical pharmacokinetic, pharmacodynamic, and efficacy relationship can greatly facilitate its clinical development. Bortezomib is a first-in-class proteasome inhibitor whose pharmacokinetic/pharmacodynamic parameters are poorly understood in terms of their relationship with efficacy. Here we characterized the bortezomib pharmacokinetic/pharmacodynamic/efficacy relationship in the CWR22 and H460 xenograft models. These studies allowed us to specifically address the question of whether the lack of broad bortezomib activity in solid tumor xenografts was due to insufficient tumor penetration. In vivo studies showed that bortezomib treatment resulted in tumor growth inhibition in CWR22 xenografts, but not in H460 xenografts. Using 20S proteasome inhibition as a pharmacodynamic marker and analyzing bortezomib tumor exposures, we show that efficacy was achieved only when suitable drug exposures drove proteasome inhibition that was sustained over time. This suggested that both the magnitude and duration of proteasome inhibition were important drivers of efficacy. Using dynamic contrast-enhanced magnetic resonance imaging and high-resolution computed tomographic imaging of vascular casts, we characterized the vasculature of CWR22 and H460 xenograft tumors and identified prominent differences in vessel perfusion, permeability, and architecture that ultimately resulted in variations in bortezomib tumor exposure. Comparing and contrasting the differences between a bortezomib-responsive and a bortezomib-resistant model with these techniques allowed us to establish a relationship among tumor perfusion, drug exposure, pharmacodynamic response and efficacy, and provided an explanation for why some solid tumor models do not respond to bortezomib treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antitumor activity of the investigational proteasome inhibitor MLN9708 in mouse models of B-cell and plasma cell malignancies.

PURPOSE The clinical success of the first-in-class proteasome inhibitor bortezomib (VELCADE) has validated the proteasome as a therapeutic target for treating human cancers. MLN9708 is an investigational proteasome inhibitor that, compared with bortezomib, has improved pharmacokinetics, pharmacodynamics, and antitumor activity in preclinical studies. Here, we focused on evaluating the in vivo a...

متن کامل

Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer.

The proteasome was validated as an oncology target following the clinical success of VELCADE (bortezomib) for injection for the treatment of multiple myeloma and recurring mantle cell lymphoma. Consequently, several groups are pursuing the development of additional small-molecule proteasome inhibitors for both hematologic and solid tumor indications. Here, we describe MLN9708, a selective, oral...

متن کامل

Tumorigenicity of Esophageal Cancer Stem Cells (ECSCs) in nude mouse xenograft model

Background and objectives: Modeling cancer in vivo is a very important tool to investigate cancer pathogenesis and molecular mechanisms involved in cancer progression. Laboratory mice are the most common animal used for rebuilding human cancer in vivo. Cancer stem cells (CSCs) are the main reason of failure in cancer therapy because of tumor relapse and metastasis. Isolation of cancer stem cell...

متن کامل

Preclinical in vivo evaluation of efficacy, pharmacokinetics, and pharmacodynamics of a novel MEK1/2 kinase inhibitor RO5068760 in multiple tumor models.

Targeting the Ras/Raf/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway represents a promising anticancer strategy. Recently, we have reported a novel class of potent and selective non-ATP-competitive MEK1/2 inhibitors with a unique structure and mechanism of action. RO5068760 is a representative of this class showing significant efficacy in a bro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 8 12  شماره 

صفحات  -

تاریخ انتشار 2009